Redacción
Ceres, planeta enano del cinturón de asteroides, es considerado en la actualidad un antiguo mundo oceánico desde que la misión Dawn de la NASA estudiara este cuerpo planetario entre 2015 y 2018, y descubriera en él evidencias de la presencia de agua y de actividad criovolcánica (una forma de actividad volcánica de baja temperatura, donde el hielo fundido -de agua, generalmente mezclada con sales, o de amoníaco- hace las veces de la roca fundida). De manera completamente inesperada, se identificaron en su superficie una amplia variedad de minerales ricos en amonio, incluyendo filosilicatos, carbonatos y cloruros.
Un equipo científico liderado por investigadores del Centro de Astrobiología (CAB, CSIC-INTA) en España ha estudiado la estabilidad de arcillas ricas en amonio, como las halladas en el planeta enano Ceres por la misión Dawn de la NASA. El análisis y caracterización de estos minerales, expuestos en laboratorio a las condiciones extremas planetarias, es de gran interés pues servirá para el desarrollo de instrumentos destinados a futuras misiones espaciales de exploración.
Los investigadores del Centro de Astrobiología han combinado diferentes técnicas analíticas junto con la simulación experimental para caracterizar en detalle esos minerales y evaluar su estabilidad. La existencia de minerales con amonio esparcidos por la superficie de Ceres ha abierto un gran debate sobre su origen, ya que este tipo de minerales se encuentra generalmente a mayores distancias del Sol. Como señala Victoria Muñoz-Iglesias, investigadora del CAB y autora principal del trabajo, “El estudio de la estabilidad temporal de estos minerales bajo las condiciones de la superficie y subsuperficie de Ceres puede ayudar a encontrar la respuesta a esta incertidumbre”.
En esta investigación, que ha sido publicada en la revista académica Applied Clay Science, se ha realizado una primera aproximación experimental. En concreto, la arcilla montmorillonita de amonio, junto con cloruro de amonio, se caracterizó tras ser sometida a condiciones de baja temperatura y de alto vacío durante varios días. Los resultados indican que el estado de agregación de las muestras ejerce un papel clave tanto en la estabilidad como en la respuesta espectroscópica.
La combinación de diferentes técnicas, como por ejemplo las espectroscopías Raman e Infrarroja (IR cercana e IR media), la difracción de rayos X y la microscopía electrónica de barrido, ha permitido a los investigadores la identificación en detalle de la presencia de las diferentes moléculas en función de su entorno. Así, los investigadores han sido capaces de distinguir entre el ion amonio depositado sobre la superficie de la arcilla y el localizado dentro de las capas del filosilicato.
Para Muñoz-Iglesias, “El análisis de texturas minerales expuestas a las condiciones extremas planetarias mediante el uso de distintas técnicas espectroscópicas es de gran interés para las futuras misiones espaciales donde está previsto utilizar este tipo de técnicas”. A partir de los datos obtenidos en este trabajo y de futuros análisis, será posible crear una base de datos que incluirá espectros de minerales-objetivo obtenidos en diferentes condiciones de temperatura, presión y estado de agregación.